Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
2.
J Transl Med ; 22(1): 17, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178089

ABSTRACT

BACKGROUND: Hemolysis is a cardinal feature of hemolytic uremic syndrome (HUS) and during hemolysis excess arginase 1 is released from red blood cells. Increased arginase activity leads to reduced L-arginine, as it is converted to urea and L-ornithine, and thereby reduced nitric oxide bioavailability, with secondary vascular injury. The objective of this study was to investigate arginase release in HUS patients and laboratory models and correlate arginase levels to hemolysis and kidney injury. METHODS: Two separate cohorts of patients (n = 47 in total) with HUS associated with Shiga toxin-producing enterohemorrhagic E. coli (EHEC) and pediatric controls (n = 35) were investigated. Two mouse models were used, in which mice were either challenged intragastrically with E. coli O157:H7 or injected intraperitoneally with Shiga toxin 2. An in vitro model of thrombotic microangiopathy was developed in which Shiga toxin 2- and E. coli O157 lipopolysaccharide-stimulated human blood cells combined with ADAMTS13-deficient plasma were perfused over glomerular endothelial cells. Two group statistical comparisons were performed using the Mann-Whitney test, multiple groups were compared using the Kruskal-Wallis test followed by Dunn's procedure, the Wilcoxon signed rank test was used for paired data, or linear regression for continuous variables. RESULTS: HUS patients had excessively high plasma arginase 1 levels and activity (conversion of L-arginine to urea and L-ornithine) during the acute phase, compared to remission and controls. Arginase 1 levels correlated with lactate dehydrogenase activity, indicating hemolysis, as well as the need for dialysis treatment. Patients also exhibited high levels of plasma alpha-1-microglobulin, a heme scavenger. Both mouse models exhibited significantly elevated plasma arginase 1 levels and activity. Plasma arginase 1 levels correlated with lactate dehydrogenase activity, alpha-1-microglobulin and urea levels, the latter indicative of kidney dysfunction. In the in vitro model of thrombotic microangiopathy, bioactive arginase 1 was released and levels correlated to the degree of hemolysis. CONCLUSIONS: Elevated red blood cell-derived arginase was demonstrated in HUS patients and in relevant in vivo and in vitro models. The excessively high arginase levels correlated to the degree of hemolysis and kidney dysfunction. Thus, arginase inhibition should be investigated in HUS.


Subject(s)
Escherichia coli Infections , Escherichia coli O157 , Hemolytic-Uremic Syndrome , Renal Insufficiency , Thrombotic Microangiopathies , Humans , Child , Animals , Mice , Shiga Toxin 2 , Endothelial Cells , Hemolysis , Arginase , Hemolytic-Uremic Syndrome/complications , Hemolytic-Uremic Syndrome/therapy , Erythrocytes , Thrombotic Microangiopathies/complications , Urea , Arginine , Ornithine , Lactate Dehydrogenases , Escherichia coli Infections/complications , Escherichia coli Infections/therapy
3.
Sci Rep ; 13(1): 19847, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37963901

ABSTRACT

Insulin-like growth factor-1 (IGF-1) is essential for normal brain development and regulates processes of vascular maturation. The pathogenesis of intraventricular hemorrhage (IVH) relates to the fragility of the immature capillaries in the germinal matrix, and its inability to resist fluctuations in cerebral blood flow. In this work, using different experimental setups, we aimed to (i) establish an optimal time-point for glycerol-induction of IVH in relation to time-point of recombinant human (rh) IGF-1/rhIGFBP-3 administration, and (ii) to evaluate the effects of a physiologic replacement dose of rhIGF-1/rhIGFBP-3 on prevention of IVH and survival in the preterm rabbit pup. The presence of IVH was evaluated using high-frequency ultrasound and post-mortem examinations. In the first part of the study, the highest incidence of IVH (> 60%), occurred when glycerol was administered at the earliest timepoint, e.g., 6 h after birth. At later time-points (18 and 24 h) the incidence decreased substantially. In the second part of the study, the incidence of IVH and mortality rate following rhIGF-1/rhIGFBP-3 administration was not statistically different compared to vehicle treated animals. To evaluate the importance of maintaining intrauterine serum levels of IGF-1 following preterm birth, as reported in human interventional studies, additional studies are needed to further characterize and establish the potential of rhIGF-1/rhIGFBP-3 in reducing the prevalence of IVH and improving survival in the preterm rabbit pup.


Subject(s)
Peptide Hormones , Premature Birth , Animals , Female , Humans , Infant, Newborn , Rabbits , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor Binding Protein 3 , Glycerol , Premature Birth/drug therapy , Cerebral Hemorrhage/prevention & control , Cerebral Hemorrhage/drug therapy , Recombinant Proteins/therapeutic use
4.
Clin Transl Sci ; 16(12): 2729-2743, 2023 12.
Article in English | MEDLINE | ID: mdl-37899696

ABSTRACT

Free heme is released from hemoproteins during hemolysis or ischemia reperfusion injury and can be pro-inflammatory. Most studies on nephrotoxicity of hemolysis-derived proteins focus on free hemoglobin (fHb) with heme as a prosthetic group. Measurement of heme in its free, non-protein bound, form is challenging and not commonly used in clinical routine diagnostics. In contrast to fHb, the role of free heme in acute kidney injury (AKI) after cardiopulmonary bypass (CPB) surgery is unknown. Using an apo-horseradish peroxidase-based assay, we identified free heme during CPB surgery as predictor of AKI in patients undergoing cardiac valve replacement (n = 37). Free heme levels during CPB surgery correlated with depletion of hemopexin (Hx), a heme scavenger-protein. In mice, the impact of high levels of circulating free heme on the development of AKI following transient renal ischemia and the therapeutic potential of Hx were investigated. C57BL/6 mice were subjected to bilateral renal ischemia/reperfusion injury for 15 min which did not cause AKI. However, additional administration of free heme in this model promoted overt AKI with reduced renal function, increased renal inflammation, and reduced renal perfusion on functional magnetic resonance imaging. Hx treatment attenuated AKI. Free heme administration to sham operated control mice did not cause AKI. In conclusion, free heme is a predictor of AKI in CPB surgery patients and promotes AKI in transient renal ischemia. Depletion of Hx in CPB surgery patients and attenuation of AKI by Hx in the in vivo model encourage further research on Hx therapy in patients with increased free heme levels during CPB surgery.


Subject(s)
Acute Kidney Injury , Hemopexin , Reperfusion Injury , Animals , Humans , Mice , Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , Cardiopulmonary Bypass/adverse effects , Heme , Hemoglobins/metabolism , Hemolysis , Hemopexin/chemistry , Hemopexin/metabolism , Ischemia/complications , Kidney/metabolism , Mice, Inbred C57BL , Reperfusion Injury/etiology
5.
Fluids Barriers CNS ; 20(1): 59, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37582792

ABSTRACT

Insulin-like growth factor-1 (IGF-1) is essential for normal brain development and regulates essential processes of vascular maturation and stabilization. Importantly, preterm birth is associated with reduced serum levels of IGF-1 as compared to in utero levels. Using a preterm rabbit pup model, we investigated the uptake of systemic recombinant human (rh) IGF-1 in complex with its main binding protein IGF-binding protein 3 (BP-3) to the brain parenchyma via the choroid plexus. Five hours after subcutaneous administration, labeled rhIGF-1/rhIGFBP-3 displayed a widespread presence in the choroid plexus of the lateral and third ventricle, however, to a less degree in the fourth, as well as in the perivascular and subarachnoid space. We found a time-dependent uptake of IGF-1 in cerebrospinal fluid, decreasing with postnatal age, and a translocation of IGF-1 through the choroid plexus. The impact of systemic rhIGF-1/rhIGFBP-3 on IGF-1 receptor activation in the choroid plexus decreased with postnatal age, correlating with IGF-1 uptake in cerebrospinal fluid. In addition, choroid plexus gene expression was observed to increase with postnatal age. Moreover, using choroid plexus in vitro cell cultures, gene expression and protein synthesis were further investigated upon rhIGF-1/rhIGFBP-3 stimulation as compared to rhIGF-1 alone, and found not to be differently altered. Here, we characterize the uptake of systemic rhIGF-1/rhIGFBP-3 to the preterm brain, and show that the interaction between systemic rhIGF-1/rhIGFBP-3 and choroid plexus varies over time.


Subject(s)
Insulin-Like Growth Factor Binding Protein 3 , Insulin-Like Growth Factor I , Animals , Female , Humans , Infant, Newborn , Rabbits , Brain/metabolism , Choroid Plexus/metabolism , Insulin-Like Growth Factor Binding Protein 3/pharmacology , Insulin-Like Growth Factor I/pharmacology , Recombinant Proteins/metabolism , Animals, Newborn
6.
Biomolecules ; 13(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37371508

ABSTRACT

177Lu-DOTATATE peptide receptor radionuclide therapy (PRRT) is used clinically to treat metastasized or unresectable neuroendocrine tumors (NETs). Although 177Lu-DOTATATE is mostly well tolerated in patients, bone marrow suppression and long-term renal toxicity are still side effects that should be considered. Amino acids are often used to minimize renal radiotoxicity, however, they are associated with nausea and vomiting in patients. α1-microglobulin (A1M) is an antioxidant with heme- and radical-scavenging abilities. A recombinant form (rA1M) has previously been shown to be renoprotective in preclinical models, including in PRRT-induced kidney damage. Here, we further investigated rA1M's renal protective effect in a mouse 177Lu-DOTATATE model in terms of administration route and dosing regimen and as a combined therapy with amino acids (Vamin). Moreover, we investigated the protective effect of rA1M on peripheral blood and bone marrow cells, as well as circulatory biomarkers. Intravenous (i.v.) administration of rA1M reduced albuminuria levels and circulatory levels of the oxidative stress-related protein fibroblast growth factor-21 (FGF-21). Dual injections of rA1M (i.e., at 0 and 24 h post-177Lu-DOTATATE administration) preserved bone marrow cellularity and peripheral blood reticulocytes. Administration of Vamin, alone or in combination with rA1M, did not show any protection of bone marrow cellularity or peripheral reticulocytes. In conclusion, this study suggests that rA1M, administered i.v. for two consecutive days in conjunction with 177Lu-DOTATATE, may reduce hematopoietic and kidney toxicity during PRRT with 177Lu-DOTATATE.


Subject(s)
Octreotide , Organometallic Compounds , Mice , Animals , Octreotide/pharmacology , Octreotide/therapeutic use , Kidney/metabolism , Disease Models, Animal , Amino Acids/pharmacology , Amino Acids/therapeutic use , Organometallic Compounds/pharmacology , Organometallic Compounds/therapeutic use
7.
Sci Rep ; 13(1): 6417, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37076494

ABSTRACT

Recombinant α1-microglobulin (A1M) is a proposed radioprotector during 177Lu-octreotate therapy of neuroendocrine tumors (NETs). To ensure a maintained therapeutic effect, we previously demonstrated that A1M does not affect the 177Lu-octreotate induced decrease in GOT1 tumor volume. However, the underlying biological events of these findings are still unknown. The aim of this work was to examine the regulation of apoptosis-related genes in GOT1 tumors short-time after i.v. administration of 177Lu-octreotate with and without A1M or A1M alone. Human GOT1 tumor-bearing mice received 30 MBq 177Lu-octreotate or 5 mg/kg A1M or co-treatment with both. Animals were sacrificed after 1 or 7 days. Gene expression analysis of apoptosis-related genes in GOT1 tissue was performed with RT-PCR. In general, similar expression patterns of pro- and anti-apoptotic genes were found after 177Lu-octreotate exposure with or without co-administration of A1M. The highest regulated genes in both irradiated groups compared to untreated controls were FAS and TNFSFRS10B. Administration of A1M alone only resulted in significantly regulated genes after 7 days. Co-administration of A1M did not negatively affect the transcriptional apoptotic response of 177Lu-octreotate in GOT1 tumors.


Subject(s)
Neuroendocrine Tumors , Humans , Mice , Animals , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/metabolism , Octreotide/pharmacology , Octreotide/therapeutic use , Aspartate Aminotransferase, Cytoplasmic
8.
Int J Mol Sci ; 23(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36362059

ABSTRACT

Cell-free hemoglobin (CFH), a pro-oxidant and cytotoxic compound that is released in hemolysis, has been associated with nephrotoxicity. Lung transplantation (LuTx) is a clinical condition with a high incidence of acute kidney injury (AKI). In this study, we investigated the plasma levels of CFH and haptoglobin, a CFH-binding serum protein, in prospectively enrolled LuTx patients (n = 20) with and without AKI. LuTx patients with postoperative AKI had higher CFH plasma levels at the end of surgery compared with no-AKI patients, and CFH correlated with serum creatinine at 48 h. Moreover, CFH levels inversely correlated with haptoglobin levels, which were significantly reduced at the end of surgery in LuTx patients with AKI. Because multiple other factors can contribute to AKI development in the complex clinical setting of LuTx, we next investigated the role of exogenous CFH administration in a mouse model of mild bilateral renal ischemia reperfusion injury (IRI). Exogenous administration of CFH after reperfusion caused overt AKI with creatinine increase, tubular injury, and enhanced markers of renal inflammation compared with vehicle-treated animals. In conclusion, CFH is a possible factor contributing to postoperative AKI after LuTx and promotes AKI in an experimental model of mild transient renal ischemia. Targeting CFH might be a therapeutic option to prevent AKI after LuTx.


Subject(s)
Acute Kidney Injury , Hemoglobins , Lung Transplantation , Reperfusion Injury , Animals , Mice , Acute Kidney Injury/diagnosis , Creatinine/chemistry , Haptoglobins/metabolism , Hemoglobins/chemistry , Hemoglobins/metabolism , Ischemia/metabolism , Kidney/metabolism , Lung Transplantation/adverse effects , Reperfusion/adverse effects , Reperfusion Injury/metabolism
9.
J Clin Med ; 11(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35887835

ABSTRACT

Exposure to circulating cell-free hemoglobin is a ubiquitous feature of open-heart surgery on cardiopulmonary bypass circulation. This study aims to determine the origins and dynamics of circulating cell-free hemoglobin and its major scavenger proteins haptoglobin and hemopexin during neonatal cardiopulmonary bypass. Forty neonates with an isolated critical congenital heart defect were included in a single-center prospective observational study. Blood samples were obtained preoperatively, hourly during bypass circulation, after bypass separation, at admission to the pediatric intensive care unit, and at postoperative days 1-3. Concentrations of cell-free hemoglobin, haptoglobin and hemopexin were determined using ELISA. Neonates were exposed to significantly elevated plasma concentrations of cell-free hemoglobin and a concomitant depletion of scavenger protein supplies during open-heart surgery. The main predictor of cell-free hemoglobin exposure was the concentration of cell-free hemoglobin in blood prime solution. Concentrations of haptoglobin and hemopexin in prime solution were important determinants for intra- and postoperative circulating scavenger protein resources.

11.
Exp Hematol ; 105: 50-61, 2022 01.
Article in English | MEDLINE | ID: mdl-34757171

ABSTRACT

Diamond-Blackfan anemia (DBA) is a rare genetic disorder in which patients present a scarcity of erythroid precursors in an otherwise normocellular bone marrow. Most, but not all, patients carry mutations in ribosomal proteins such as RPS19, suggesting that compromised mRNA translation and ribosomal stress are pathogenic mechanisms causing depletion of erythroid precursors. To gain further insight to disease mechanisms in DBA, we performed a custom short hairpin RNA (shRNA) based screen against 750 genes hypothesized to affect DBA pathophysiology. Among the hits were two shRNAs against the erythroid specific heme-regulated eIF2α kinase (HRI), which is a negative regulator of mRNA translation. This study shows that shRNA-mediated HRI silencing or loss of one HRI allele improves expansion of Rps19-deficient erythroid precursors, as well as improves the anemic phenotype in Rps19-deficient animals. We found that Rps19-deficient erythroblasts have elevated levels of unbound intracellular heme, which is normalized by HRI heterozygosity. Additionally, targeting elevated heme levels by treating cells with the heme scavenger alpha-1-microglobulin (A1M), increased proliferation of Rps19-deficient erythroid precursors and decreased heme levels in a disease-specific manner. HRI heterozygosity, but not A1M treatment, also decreased the elevated p53 activity observed in Rps19-deficient cells, indicating that p53 activation is caused by ribosomal stress and aberrant mRNA translation and not heme overload in Rps19-deficiency. Together, these findings suggest that targeting elevated heme levels is a promising new treatment strategy for DBA.


Subject(s)
Alpha-Globulins/therapeutic use , Anemia, Diamond-Blackfan/therapy , Heme/analysis , Anemia, Diamond-Blackfan/blood , Anemia, Diamond-Blackfan/genetics , Animals , Cells, Cultured , Disease Models, Animal , Female , Gene Deletion , Gene Silencing , Genetic Therapy , Heme/genetics , Humans , Mice , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/genetics , Recombinant Proteins/therapeutic use , Ribosomal Proteins/genetics
12.
Dev Neurosci ; 43(5): 281-295, 2021.
Article in English | MEDLINE | ID: mdl-34218224

ABSTRACT

Following preterm birth, serum levels of insulin-like growth factor 1 (IGF-1) decrease compared to corresponding in utero levels. A recent clinical trial indicated that supplementation with recombinant human (rh) IGF-1/rhIGF-binding protein 3 (rhIGF-1/rhIGFBP-3) prevents severe intraventricular hemorrhage (IVH) in extremely preterm infants. In a preterm rabbit pup model, we characterized endogenous serum and hepatic IGF-1, along with brain distribution of IGF-1 and IGF-1 receptor (IGF1R). We then evaluated the effects of rhIGF-1/rhIGFBP-3 on gene expression of regulators of cerebrovascular maturation and structure. Similar to preterm infants, serum IGF-1 concentrations decreased rapidly after preterm birth in the rabbit pup. Administration of rhIGF-1/rhIGFBP-3 restored in utero serum levels but was rapidly eliminated. Immunolabeled IGF1R was widely distributed in multiple brain regions, displaying an abundant density in the choroid plexus and sub-ependymal germinal zones. Increased IGF-1 immunoreactivity, distributed as IGF1R, was detected 4 h after rhIGF-1/rhIGFBP-3 administration. The rhIGF-1/rhIGFBP-3 treatment led to upregulation of choroid plexus genes involved in vascular maturation and structure, with corresponding protein translation for most of these genes. The preterm rabbit pup model is well suited for evaluation of IGF-1-based prevention of IVH. Administration of rhIGF-1/rhIGFBP-3 affects cerebrovascular maturation, suggesting a role for it in preventing preterm IVH.


Subject(s)
Insulin-Like Growth Factor I , Premature Birth , Animals , Carrier Proteins , Humans , Infant, Extremely Premature , Infant, Newborn , Insulin-Like Growth Factor Binding Protein 3 , Rabbits , Recombinant Proteins
13.
Int J Mol Sci ; 22(13)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206377

ABSTRACT

Infiltration of red blood cells into atheromatous plaques and oxidation of hemoglobin (Hb) and lipoproteins are implicated in the pathogenesis of atherosclerosis. α1-microglobulin (A1M) is a radical-scavenging and heme-binding protein. In this work, we examined the origin and role of A1M in human atherosclerotic lesions. Using immunohistochemistry, we observed a significant A1M immunoreactivity in atheromas and hemorrhaged plaques of carotid arteries in smooth muscle cells (SMCs) and macrophages. The most prominent expression was detected in macrophages of organized hemorrhage. To reveal a possible inducer of A1M expression in ruptured lesions, we exposed aortic endothelial cells (ECs), SMCs and macrophages to heme, Oxy- and FerrylHb. Both heme and FerrylHb, but not OxyHb, upregulated A1M mRNA expression in all cell types. Importantly, only FerrylHb induced A1M protein secretion in aortic ECs, SMCs and macrophages. To assess the possible function of A1M in ruptured lesions, we analyzed Hb oxidation and heme-catalyzed lipid peroxidation in the presence of A1M. We showed that recombinant A1M markedly inhibited Hb oxidation and heme-driven oxidative modification of low-density lipoproteins as well plaque lipids derived from atheromas. These results demonstrate the presence of A1M in atherosclerotic plaques and suggest its induction by heme and FerrylHb in the resident cells.


Subject(s)
Alpha-Globulins/metabolism , Atherosclerosis/etiology , Atherosclerosis/metabolism , Heme/metabolism , Hemoglobins/metabolism , Lipid Peroxidation , Oxidation-Reduction , Atherosclerosis/pathology , Biomarkers , Carotid Artery Diseases/etiology , Carotid Artery Diseases/metabolism , Carotid Artery Diseases/pathology , Cells, Cultured , Disease Progression , Disease Susceptibility , Hemorrhage/metabolism , Hemorrhage/pathology , Humans , Immunohistochemistry , Myocytes, Smooth Muscle/metabolism , Plaque, Atherosclerotic/etiology , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology
14.
Int J Biol Macromol ; 184: 955-966, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34153360

ABSTRACT

Hemoglobin-based oxygen carriers have long been pursued to meet clinical needs by using native hemoglobin (Hb) from human or animal blood, or recombinantly produced Hb, but the development has been impeded by safety and toxicity issues. Herewith we report the successful production of human fetal hemoglobin (HbF) in Nicotiana benthamiana through Agrobacterium tumefaciens-mediated transient expression. HbF is a heterotetrameric protein composed of two identical α- and two identical γ-subunits, held together by hydrophobic interactions, hydrogen bonds, and salt bridges. In our study, the α- and γ-subunits of HbF were fused in order to stabilize the α-subunits and facilitate balanced expression of α- and γ-subunits in N. benthamiana. Efficient extraction and purification methods enabled production of the recombinantly fused endotoxin-free HbF (rfHbF) in high quantity and quality. The transiently expressed rfHbF protein was identified by SDS-PAGE, Western blot and liquid chromatography-tandem mass spectrometry analyses. The purified rfHbF possessed structural and functional properties similar to native HbF, which were confirmed by biophysical, biochemical, and in vivo animal studies. The results demonstrate a high potential of plant expression systems in producing Hb products for use as blood substitutes.


Subject(s)
Fetal Hemoglobin/genetics , Nicotiana/genetics , Oxygen/metabolism , Fetal Hemoglobin/isolation & purification , Fetal Hemoglobin/metabolism , Humans , Hydrogen Bonding , Plant Proteins/isolation & purification , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Nicotiana/growth & development , Nicotiana/metabolism
15.
Front Physiol ; 12: 645650, 2021.
Article in English | MEDLINE | ID: mdl-33746781

ABSTRACT

α1-microglobulin (A1M) is found in all vertebrates including humans. A1M was, together with retinol-binding protein and ß-lactoglobulin, one of the three original lipocalins when the family first was proposed in 1985. A1M is described as an antioxidant and tissue cleaning protein with reductase, heme- and radical-binding activities. These biochemical properties are driven by a strongly electronegative surface-exposed thiol group, C34, on loop 1 of the open end of the lipocalin barrel. A1M has been shown to have protective effects in vitro and in vivo in cell-, organ-, and animal models of oxidative stress-related medical conditions. The gene coding for A1M is unique among lipocalins since it is flanked downstream by four exons coding for another non-lipocalin protein, bikunin, and is consequently named α1-microglobulin-bikunin precursor gene (AMBP). The precursor is cleaved in the Golgi, and A1M and bikunin are secreted from the cell separately. Recent publications have suggested novel physiological roles of A1M in regulation of endoplasmic reticulum activities and erythrocyte homeostasis. This review summarizes the present knowledge of the structure and functions of the lipocalin A1M and presents a current model of its biological role(s).

16.
J Neuroinflammation ; 18(1): 42, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33573677

ABSTRACT

BACKGROUND: Germinal matrix intraventricular hemorrhage (GM-IVH) is associated with deposition of redox active cell-free hemoglobin (Hb), derived from hemorrhagic cerebrospinal fluid (CSF), in the cerebrum and cerebellum. In a recent study, using a preterm rabbit pup model of IVH, intraventricularly administered haptoglobin (Hp), a cell-free Hb scavenger, partially reversed the damaging effects observed following IVH. Together, this suggests that cell-free Hb is central in the pathophysiology of the injury to the immature brain following GM-IVH. An increased understanding of the causal pathways and metabolites involved in eliciting the damaging response following hemorrhage is essential for the continued development and implementation of neuroprotective treatments of GM-IVH in preterm infant. METHODS: We exposed immature primary rat mixed glial cells to hemorrhagic CSF obtained from preterm human infants with IVH (containing a mixture of Hb-metabolites) or to a range of pure Hb-metabolites, incl. oxidized Hb (mainly metHb with iron in Fe3+), oxyHb (mainly Fe2+), or low equivalents of heme, with or without co-administration with human Hp (a mixture of isotype 2-2/2-1). Following exposure, cellular response, reactive oxygen species (ROS) generation, secretion and expression of pro-inflammatory cytokines and oxidative markers were evaluated. RESULTS: Exposure of the glial cells to hemorrhagic CSF as well as oxidized Hb, but not oxyHb, resulted in a significantly increased rate of ROS production that positively correlated with the rate of production of pro-inflammatory and oxidative markers. Congruently, exposure to oxidized Hb caused a disintegration of the polygonal cytoskeletal structure of the glial cells in addition to upregulation of F-actin proteins in microglial cells. Co-administration of Hp partially reversed the damaging response of hemorrhagic CSF and oxidized Hb. CONCLUSION: Exposure of mixed glial cells to oxidized Hb initiates a pro-inflammatory and oxidative response with cytoskeletal disintegration. Early administration of Hp, aiming to minimize the spontaneous autoxidation of cell-free oxyHb and liberation of heme, may provide a therapeutic benefit in preterm infant with GM-IVH.


Subject(s)
Cerebrospinal Fluid/metabolism , Hemoglobins/metabolism , Inflammation Mediators/metabolism , Neuroglia/metabolism , Oxygen/metabolism , Reactive Oxygen Species/metabolism , Animals , Animals, Newborn , Cell Culture Techniques , Cell-Free System/drug effects , Cell-Free System/metabolism , Cerebral Hemorrhage/cerebrospinal fluid , Coculture Techniques , Dose-Response Relationship, Drug , Hemoglobins/administration & dosage , Humans , Infant, Newborn , Neuroglia/drug effects , Oxygen/administration & dosage , Rats , Rats, Sprague-Dawley
17.
Biomolecules ; 11(2)2021 02 10.
Article in English | MEDLINE | ID: mdl-33579037

ABSTRACT

Anti-prostate specific membrane antigen (PSMA) radioligand therapy is promising but not curative in castration resistant prostate cancer. One way to broaden the therapeutic index could be to administer higher doses in combination with radioprotectors, since administered radioactivity is kept low today in order to avoid side-effects from a high absorbed dose to healthy tissue. Here, we investigated the human radical scavenger α1-microglobulin (A1M) together with 177-Lutetium (177Lu) labeled PSMA-617 in preclinical models with respect to therapeutic efficacy and kidney toxicity. Nude mice with subcutaneous LNCaP xenografts were injected with 50 or 100 MBq of [177Lu]Lu-PSMA-617, with or without injections of recombinant A1M (rA1M) (at T = 0 and T = 24 h). Kidney absorbed dose was calculated to 7.36 Gy at 4 days post a 100 MBq injection. Activity distribution was imaged with Single-Photon Emission Computed Tomography (SPECT) at 24 h. Tumor volumes were measured continuously, and kidneys and blood were collected at termination (3-4 days and 3-4 weeks after injections). In a parallel set of experiments, mice were given [177Lu]Lu-PSMA-617 and rA1M as above and dynamic technetium-99m mercaptoacetyltriglycine ([99mTc]Tc-MAG3) SPECT imaging was performed prior to injection, and 3- and 6-months post injection. Blood and urine were continuously sampled. At termination (6 months) the kidneys were resected. Biomarkers of kidney function, expression of stress genes and kidney histopathology were analyzed. [177Lu]Lu-PSMA-617 uptake, in tumors and kidneys, as well as treatment efficacy did not differ between rA1M and vehicle groups. In mice given rA1M, [99mTc]Tc-MAG3 imaging revealed a significantly higher slope of initial uptake at three months compared to mice co-injected with [177Lu]Lu-PSMA-617 and vehicle. Little or no change compared to control was seen in urine albumin, serum/plasma urea levels, RT-qPCR analysis of stress response genes and in the kidney histopathological evaluation. In conclusion, [99mTc]Tc-MAG3 imaging presented itself as a sensitive tool to detect changes in kidney function revealing that administration of rA1M has a potentially positive effect on kidney perfusion and tubular function when combined with [177Lu]Lu-PSMA-617 therapy. Furthermore, we could show that rA1M did not affect anti-PSMA radioligand therapy efficacy.


Subject(s)
Alpha-Globulins/metabolism , Antioxidants/chemistry , Kidney Diseases/metabolism , Lutetium/chemistry , Radioisotopes/chemistry , Technetium Tc 99m Mertiatide/chemistry , Animals , Cell Line, Tumor , Dipeptides , Heterocyclic Compounds, 1-Ring , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Prostate-Specific Antigen , Radiometry , Radiopharmaceuticals , Tomography, Emission-Computed, Single-Photon
18.
Free Radic Biol Med ; 162: 160-170, 2021 01.
Article in English | MEDLINE | ID: mdl-32092411

ABSTRACT

α1-microglobulin (A1M) is a ubiquitous protein with reductase and radical- and heme-binding properties. The protein is mainly expressed in the liver and encoded by the α1-microglobulin-bikunin precursor (AMBP) gene together with the plasma proteinase inhibitor bikunin. The AMBP polypeptide is translated, glycosylated and the C-terminal bikunin part linked via a chondroitin sulfate glycosaminoglycan chain to one or two heavy chains in the endoplasmic reticulum (ER) and Golgi compartments. After proteolytic cleavage, the A1M protein and complexed bikunin parts are secreted separately. The complete physiological role of A1M, and the reason for the co-synthesis with bikunin, are both still unknown. The aim of this work was to develop an A1M knockout (A1M-KO) mouse model lacking expression of A1M, but with a preserved bikunin expression, and to study the phenotypic traits in these mice, with a focus on hepatic endoplasmic reticulum (ER) function. The bikunin expression was increased in the A1M-KO mouse livers, while the bikunin levels in plasma were decreased, indicating a defective biosynthesis of bikunin. The A1M-KO livers also showed an increased expression of transducers of the unfolded protein response (UPR), indicating an increased ER-stress in the livers. At twelve months of age, the A1M-KO mice also displayed an increased body weight, and an increased liver weight and lipid accumulation. Moreover, the KO mice showed an increased expression of endogenous antioxidants in the liver, but not in the kidneys. Together, these results suggest a physiological role of A1M as a regulator of the intracellular redox environment and more specifically the ER folding and posttranslational modification processes, particularly in the liver.


Subject(s)
Alpha-Globulins , Endoplasmic Reticulum Stress , Alpha-Globulins/genetics , Animals , Body Weight , Endoplasmic Reticulum Stress/genetics , Mice , Mice, Knockout
19.
Free Radic Biol Med ; 162: 149-159, 2021 01.
Article in English | MEDLINE | ID: mdl-32092412

ABSTRACT

During red blood cell (RBC) lysis hemoglobin and heme leak out of the cells and cause damage to the endothelium and nearby tissue. Protective mechanisms exist; however, these systems are not sufficient in diseases with increased extravascular hemolysis e.g. hemolytic anemia. α1-microglobulin (A1M) is a ubiquitous reductase and radical- and heme-binding protein with antioxidation properties. Although present in the circulation in micromolar concentrations, its function in blood is unclear. Here, we show that A1M provides RBC stability. A1M-/- mice display abnormal RBC morphology, reminiscent of macrocytic anemia conditions, i.e. fewer, larger and more heterogeneous cells. Recombinant human A1M (rA1M) reduced in vitro hemolysis of murine RBC against spontaneous, osmotic and heme-induced stress. Moreover, A1M is taken up by human RBCs both in vitro and in vivo. Similarly, rA1M also protected human RBCs against in vitro spontaneous, osmotic, heme- and radical-induced hemolysis as shown by significantly reduced leakage of hemoglobin and LDH. Addition of rA1M resulted in decreased hemolysis compared to addition of the heme-binding protein hemopexin and the radical-scavenging and reducing agents ascorbic acid and Trolox (vitamin E). Furthermore, rA1M significantly reduced spontaneous and heme-induced fetal RBC cell death. Addition of A1M to human whole blood resulted in a significant reduction of hemolysis, whereas removal of A1M from whole blood resulted in increased hemolysis. We conclude that A1M has a protective function in reducing hemolysis which is neither specific to the origin of hemolytic insult, nor species specific.


Subject(s)
Anemia, Macrocytic , Hemolysis , Alpha-Globulins , Animals , Cell Death , Erythrocytes , Humans , Mice , Mice, Knockout , Phenotype
20.
Int J Mol Sci ; 21(21)2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33142923

ABSTRACT

Heme released from red blood cells targets a number of cell components including the cytoskeleton. The purpose of the present study was to determine the impact of free heme (20-300 µM) on human skeletal muscle fibres made available during orthopedic surgery. Isometric force production and oxidative protein modifications were monitored in permeabilized skeletal muscle fibre segments. A single heme exposure (20 µM) to muscle fibres decreased Ca2+-activated maximal (active) force (Fo) by about 50% and evoked an approximately 3-fold increase in Ca2+-independent (passive) force (Fpassive). Oxidation of sulfhydryl (SH) groups was detected in structural proteins (e.g., nebulin, α-actinin, meromyosin 2) and in contractile proteins (e.g., myosin heavy chain and myosin-binding protein C) as well as in titin in the presence of 300 µM heme. This SH oxidation was not reversed by dithiothreitol (50 mM). Sulfenic acid (SOH) formation was also detected in the structural proteins (nebulin, α-actinin, meromyosin). Heme effects on SH oxidation and SOH formation were prevented by hemopexin (Hpx) and α1-microglobulin (A1M). These data suggest that free heme has a significant impact on human skeletal muscle fibres, whereby oxidative alterations in structural and contractile proteins limit contractile function. This may explain and or contribute to the weakness and increase of skeletal muscle stiffness in chronic heart failure, rhabdomyolysis, and other hemolytic diseases. Therefore, therapeutic use of Hpx and A1M supplementation might be effective in preventing heme-induced skeletal muscle alterations.


Subject(s)
Cysteine/metabolism , Heme/pharmacology , Muscle Contraction/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle Proteins/metabolism , Myofibrils/drug effects , Amino Acid Sequence , Calcium/metabolism , Cysteine/chemistry , Humans , Mass Spectrometry/methods , Muscle Contraction/physiology , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Myofibrils/metabolism , Myofibrils/pathology , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...